
RÉALITÉ AUGMENTÉE (RA)

L'objectif pédagogique du cours est de permettre aux apprenants de comprendre et de mettre enœuvre une application de réalité augmentée intégrant plusieurs compétences
clés : détection robuste en vision par ordinateur d'un marqueur rectangulaire (feuille A4), estimation de la pose 3D dumarqueur en temps réel, et superposition en 3D d'un objet
virtuel en cohérence avec ce marqueur. Le travail demandé vise à développer des savoir-faire pratiques en calibration de caméra, traitement d’image, algorithmie de suivi et rendu
3D via OpenGL, tout en sensibilisant à la gestion des ressources, à la structurationmodulaire du code, et à l’optimisation des performances pour un usage temps réel. Il s’inscrit
dans une démarche pédagogique favorisant l’autonomie, l’expérimentation et la validation sur des données réelles et variées (image fixe, séquences vidéo, flux caméra direct).
L’évaluation de ce travail sera guidée par la grille suivante :

1. ARCHITECTURE ET ORGANISATION DU CODE

Critère Insuffisant (1) Satisfaisant (2) Bon (3) Excellent (4)

Structure modulaire Codemonolithique sans
organisation

Quelques fonctions, organisation
basique

Structures de données dédiées, fonctions
bien organisées

Architecture claire avec « namespaces »,
structures cohérentes…

Documentation Aucune documentation Commentaires sporadiques Commentaires sur fonctions principales Documentation « Doxygen » complète avec
descriptions détaillées

Gestion des ressources Fuites mémoire, pas de
nettoyage Nettoyage partiel Gestion correcte des ressources

OpenGL/OpenCV Nettoyage systématique avec fonctions dédiées

2. VISION PAR ORDINATEUR (OPENCV)

Critère Insuffisant (1) Satisfaisant (2) Bon (3) Excellent (4)

Détection demarqueur Détection basique non
fonctionnelle Détection simple sans robustesse Détection avec seuillage adaptatif Détection robuste avec ROI adaptative et

validation temporelle

Calibration caméra Pas de calibration Calibration manuelle basique Chargement paramètres depuis fichier Gestion complète matrice intrinsèque et
coefficients distorsion

Estimation de pose Pas d'estimation 3D Utilisation de la fonction solvePnP
basique sans validation Estimation avec points triés correctement Estimation robuste avec validation cohérence

inter-frames

Traitement d'image Opérations élémentaires Conversion couleur et seuillage Pipeline complet avec filtrage
Pipeline optimisé avec adaptation dynamique
des paramètres

3. INTÉGRATION AR ET SUIVI

Critère Insuffisant (1) Satisfaisant (2) Bon (3) Excellent (4)

Robustesse suivi Perte fréquente dumarqueur Suivi instable avec sauts Suivi stable en conditions normales Validation temporelle avec seuil de cohérence,
gestion de l’éclairage

Superposition 3D Alignement incorrect Alignement approximatif Bonne superposition Superposition précise avec perspective correcte
et repères visuels

1



Performance temps réel < 15 fps, latence importante 15-20 fps, latence visible 20-25 fps, latence acceptable ≥ 25 fps stable avec pipeline optimisé

Enregistrement vidéo Pas d'enregistrement Capture basique avec artéfacts Enregistrement fonctionnel
Capture via la fonction glReadPixels avec
conversion et redimensionnement automatique

4. QUALITÉ TECHNIQUE

Critère Insuffisant (1) Satisfaisant (2) Bon (3) Excellent (4)

Gestion d'erreurs Pas de gestion, crashs
fréquents Try-catch basique Gestion avec messages explicites Validation systématique avec exceptions typées

et messages détaillés

Configuration Valeurs en dur dans le code Quelques constantes Namespace Config dédié Configuration complète centralisée et
documentée

Complexité visuelle Objet 3D simple Cube + axes Cube + axes + marqueurs Rendumultiple avec cercles aux coins, codes
couleur cohérents, etc…

Adaptabilité Code nonmodifiable Paramètres modifiables
manuellement Paramètres centralisés

Architecture extensible pour nouveaux
marqueurs/objets 3D

5. ALGORITHMES ET TECHNIQUES AVANCÉES

Critère Insuffisant (1) Satisfaisant (2) Bon (3) Excellent (4)

Tri de points Ordre incorrect ou aléatoire Tri basique par coordonnées Algorithme avec séparation haut/bas Tri robuste garantissant correspondance coins
physiques/virtuels

Transformation coordonnées Conversion incorrecte Conversion partielle Matrices complètes OpenCV -> OpenGL Pipeline complet avec Rodrigues, transposition et
conversion types

Optimisation pipeline Calculs redondants à chaque
frame Quelques optimisations Pipeline structuré

Réutilisation textures, mise à jour conditionnelle,
buffering efficace

6. TESTS ET VALIDATION SUR DONNÉES RÉELLES

Critère Insuffisant (1) Satisfaisant (2) Bon (3) Excellent (4)

Image statique fournie Ne fonctionne pas sur l'image
test Détection partielle avec erreurs Détection fonctionnelle avec quelques

imprécisions
Détection et superposition 3D parfaitement
alignées

Séquence vidéo fournie Ne fonctionne pas sur la
vidéo test Suivi instable, nombreuses pertes Suivi fonctionnel avec pertes

occasionnelles Suivi robuste sans perte sur toute la séquence

Vidéo acquise par l'élève Pas de vidéo personnelle
testée

Ne fonctionne que dans des
conditions idéales Fonctionne dans des conditions variées Fonctionne avec différents éclairages, angles et

distances

Flux caméra temps réel Pas d'implémentation
caméra en direct

Fonctionnemais avec latence
importante Suivi temps réel fonctionnel

Suivi temps réel fluide et robuste avec adaptation
automatique

2



SYSTÈME DE NOTATION

Échelle d'évaluation :
• Insuffisant (1 point) : Compétences de base nonmaîtrisées
• Satisfaisant (2 points) : Compétences de base acquises
• Bon (3 points) : Compétences intermédiaires maîtrisées
• Excellent (4 points) : Compétences avancées maîtrisées

Barème indicatif :
• 23-39 points : Niveau débutant - Compétences à développer
• 40-59 points : Niveau intermédiaire - Bases solides

• 60-79 points : Niveau avancé - Bonnemaîtrise
• 80-88 points : Niveau expert - Excellente maîtrise
Note importante sur la note finale :

• La subsection ”Tests et Validation sur Données Réelles” est essentielle pour valider
la robustesse de l'application. Un projet excellent doit fonctionner sur différents
types de données (image fixe, vidéo préenregistrée, vidéo personnelle et flux
caméra temps réel).

• L’expérience utilisateur sera prise en compte pour la note finale.

La note finale sera pondérée au regard de ces deux points.

3



RÉALITÉ VIRTUELLE (RV)

L'objectif pédagogique du cours est de permettre aux apprenants de comprendre et de mettre en œuvre une application de réalité virtuelle. Le travail demandé vient en continuité
du cours de réalité augmentée en :

• Réutilisant les compétences de suivi (tracking) et calibration

• Étendant la complexité des scènes 3D (de cube simple à environnement)

• Approfondissant OpenGL (éclairage, texturage, ombres)

• Explorant les modes de représentation (vidéo vs environnement virtuel)

• Consolidant la gestion temps réel et l’optimisation

L’apprenant sera capable de concevoir et d’assembler une architecture logicielle cohérente qui réutilise un code AR existant et y ajoute le labyrinthe, la sphère texturée, l’ombre et
la gestion des deuxmodes d’affichage. Il pourra créer unemise en scène 3D complète autour dumarqueur (organisation du labyrinthe, placement de la lumière, choix du fond
virtuel) en tenant compte à la fois des contraintes techniques et de la lisibilité pour l’utilisateur.

1. ARCHITECTURE ET ORGANISATION DU CODE

Critère Insuffisant (1) Satisfaisant (2) Bon (3) Excellent (4)

Structure modulaire Codemonolithique sans
organisation

Quelques fonctions, organisation
basique

Structures de données dédiées, fonctions
bien organisées

Architecture claire avec « namespaces »,
structures cohérentes…

Documentation Aucune documentation Commentaires sporadiques Commentaires sur fonctions principales Documentation « Doxygen » complète avec
descriptions détaillées

Gestion des ressources Fuites mémoire, pas de
nettoyage Nettoyage partiel Gestion correcte des ressources

OpenGL/OpenCV Nettoyage systématique avec fonctions dédiées

Intégrité du code hérité RA Le prototype RA est cassé Le prototype RA fonctionnemais
modifié

Le prototype RA conservé avec
modifications minimales

Prototype RA complètement préservé, évolution
clean vers VR sans régression

2. GÉOMÉTRIE ET CONSTRUCTION DU LABYRINTHE

Critère Insuffisant (1) Satisfaisant (2) Bon (3) Excellent (4)

Positionnement relatif au
marqueur Murs mal placés, non alignés Murs grossièrement positionnés Murs bien positionnés autour du

marqueur
Disposition précise avec marges cohérentes,
structure géométrique robuste

Dynamique de suivi Labyrinthe figé, ne suit pas le
marqueur Suivi imprécis ou avec décalage Suivi correct dumarqueur Suivi fluide et précis, adaptation automatique de

la matrice de transformation

4



3. SPHÈRE TEXTURÉE ET MATÉRIAUX

Critère Insuffisant (1) Satisfaisant (2) Bon (3) Excellent (4)

Génération de la sphère Absente Sphère basique sans qualité visuelle Sphère avec UVmapping correct Sphère optimisée avec paramétrage UV précis
Texturage Pas de texture Texture appliquée (UV incorrectes) Texture correcte Texture de haute qualité (mipmapping, filtrage…)
Propriétés matériau Pas de matériau défini Couleur basique uniquement Diffuse + specular Diffuse + specular + ambient + shininess paramétrables

4. OMBRES ET OMBRAGE

Critère Insuffisant (1) Satisfaisant (2) Bon (3) Excellent (4)

Ombre simple Pas d’ombre Ombre basique (projection orthogonale) Ombre au sol avec géométrie correcte Ombre avec perspective adaptée
Performance ombre Ralentissement significatif Léger ralentissement Impact négligeable (< 5% fps) Aucun impact ressenti

5. ÉCLAIRAGE

Critère Insuffisant (1) Satisfaisant (2) Bon (3) Excellent (4)

Modèle d’éclairage Pas d’éclairage, flat color Éclairage diffus basique (Lambertien) Phong ou Blinn-Phong complet PBR (Physically Based Rendering) ou Phong
avancé

Shaders spécialisés Shaders génériques ou absents 1 seul shader pour tout Shaders séparés pour labyrinth et sphère Shaders optimisés par type de géométrie

6. GESTION DES MODES AR/VR

Critère Insuffisant (1) Satisfaisant (2) Bon (3) Excellent (4)

Mode Augmenté (AR) Absent ou non fonctionnel Affichage vidéo + 3D avec décalage Superposition correcte vidéo et 3D Superposition précise avec gestion profondeur,
blending adapté

Mode Virtuel (VR) Absent ou non
implémentable Basculement basique, fond blanc Basculement vers fond virtuel fonctionnel Fond virtuel (skybox, couleur, texture) avec

transition fluide

Basculement AR ↔ VR Non implémenté Basculement manuel fragile Basculement stable via touche
Basculement instantané et robuste, gestion des
ressources propre

7. RENDU 3D ET PERFORMANCE

Critère Insuffisant (1) Satisfaisant (2) Bon (3) Excellent (4)

Qualité visuelle globale Aliasing visible, textures floues Qualité acceptable en standard Bonne qualité visuelle, peu d’artefacts Rendu lisse, sans aliasing notable, cohérence
visuelle

Performance temps réel < 15 fps instable 15-20 fps avec variations 20-25 fps stable ≥ 25 fps constant avec headroom (< 80% charge)

5



SYSTÈME DE NOTATION

Échelle d'évaluation :
• Insuffisant (1 point) : Compétences de base nonmaîtrisées
• Satisfaisant (2 points) : Compétences de base acquises
• Bon (3 points) : Compétences intermédiaires maîtrisées
• Excellent (4 points) : Compétences avancées maîtrisées

Barème indicatif :
• 20-33 points : Niveau débutant - Compétences à développer
• 34-46 points : Niveau intermédiaire - Bases solides
• 47-59 points : Niveau avancé - Bonnemaîtrise
• 60-72 points : Niveau expert - Excellente maîtrise

L’expérience utilisateur sera prise en compte pour la note finale.

6



RÉALITÉ MIXTE (RM)

L’objectif pédagogique du cours est de permettre aux apprenants de concevoir une expérience de réalité mixte interactive, où des objets virtuels coexistent et interagissent avec un
plan réel tracké en temps réel. Ils devront implémenter une bille dont le mouvement dépend directement de l’inclinaison du plan.
Pour intégrer convenablement la communication homme-machine, Il s’agira également de mettre enœuvre une physique de jeu robuste : collisions bille–murs, rebonds, stabilité
numérique et jouabilité en conditions réelles. Les apprenants développeront une génération procédurale de labyrinthes à complexité contrôlée, avec un départ et une arrivée
garantissant une progression cohérente. Enfin, ils mettront en place une boucle de jeu (démarrer, valider la sortie, passer au niveau suivant) et, en option, des paramètres ajustables
(vitesse, restitution des rebonds) pour expérimenter l’équilibrage.

1. ARCHITECTURE ET ORGANISATION DU CODE

Critère Insuffisant (1) Satisfaisant (2) Bon (3) Excellent (4)

Structure modulaire Codemonolithique sans
organisation

Quelques fonctions, organisation
basique

Structures de données dédiées, fonctions
bien organisées

Architecture claire avec « namespaces »,
structures cohérentes…

Documentation Aucune documentation Commentaires sporadiques Commentaires sur fonctions principales Documentation « Doxygen » complète avec
descriptions détaillées

Gestion des ressources Fuites mémoire, pas de
nettoyage Nettoyage partiel Gestion correcte des ressources

OpenGL/OpenCV Nettoyage systématique avec fonctions dédiées

2. PHYSIQUE BILLE ET PLAN

Le mouvement attendu peut être modélisé en projetant la gravité sur le plan incliné et en intégrant la dynamique à chaque frame.
https://www.physicsclassroom.com/class/vectors/Lesson-3/Inclined-Planes

Critère Insuffisant (1) Satisfaisant (2) Bon (3) Excellent (4)

Mouvement selon inclinaison Mouvement absent ou
incohérent

Mouvement présent mais peu
fidèle (sens/échelle discutables)

Mouvement cohérent (direction, échelle),
stable.

Mouvement réaliste avec paramétrage (gain,
friction), stabilité exemplaire

Conversion pose →
inclinaison

Ne tient pas compte de
l’orientation trackée.

Prend en compte une partie des
axes, erreurs fréquentes

Exploite correctement l’orientation du
plan pour piloter la bille

Mapping robuste (axes, repères), indépendant
des conventions caméra/monde

Intégration temporelle Instable (explosions,
oscillations)

Stable mais dépend fortement du
FPS

Stable avec 𝑑𝑡 explicite et limites
raisonnables

Stable et robuste (clamp 𝑑𝑡, semi-implicite,
comportement identique selon FPS)

Dissipation (friction) Pas de friction, bille “glisse”
indéfiniment

Friction ad-hoc, résultats peu
contrôlables Friction cohérente, paramétrable Pas de friction, bille “glisse” indéfiniment

Stabilité avec tracking bruité La bille devient inutilisable
(sauts) Filtrage minimal, “jitter” visible Filtrage/atténuation efficace (lissage pose

ou accélération)
Compensation avancée (filtrage temporel,
anti-sauts), très jouable en conditions réelles

3. COLLISIONS ET REBONDS

7

https://www.physicsclassroom.com/class/vectors/Lesson-3/Inclined-Planes


Critère Insuffisant (1) Satisfaisant (2) Bon (3) Excellent (4)

Détection sphère–murs Aucune ou très incomplète Détection partielle, collisions
ratées Détection fiable sur l’ensemble des murs Détection robuste (coins, couloirs étroits), sans

“tunneling” notable

Réponse au contact Bille traverse ou colle aux
murs Rebond présent mais instable Rebond stable avec restitution correcte Rebond stable + gestion frottement tangentielle,

restitution paramétrable
Confinement dans le
labyrinthe Sort de la zone/monde. Confinement approximatif Confinement correct et constant. Confinement impeccable, y compris lors de

tracking partiel/latence

Gestion des cas limites Comportements erratiques
aux angles

Coin/angles parfois
problématiques. Angles gérés correctement

Gestion avancée (résolution itérative, correction
pénétration), très robuste

4. GÉNÉRATION AUTOMATIQUE DU LABYRINTHE

Les algorithmes ”classiques” de génération (ex. DFS/backtracking, Prim) permettent de générer des labyrinthes connectés, souvent ”parfaits” (un seul chemin entre deux cellules),
ce qui facilite la maîtrise de la difficulté.
https://dumbgenius.github.io/experiments/mazegen/

Critère Insuffisant (1) Satisfaisant (2) Bon (3) Excellent (4)

Génération procédurale Labyrinthe figé (manuel) ou
non fonctionnel

Génération simple mais peu
contrôlée

Génération fonctionnelle avec paramètres
de taille

Génération maîtrisée (taille + complexité) et
répétable (seed)

Maîtrise de la complexité Impossible d’ajuster la
difficulté

Ajustement grossier (taille
seulement)

Ajustement via plusieurs paramètres
(taille, densité, couloirs)

Ajustement fin + progression par niveaux (courbe
de difficulté)

Départ & arrivée (validité) Départ/arrivée absents ou
non atteignables Parfois atteignables Toujours atteignables, règles claires Validation automatique (chemin garanti),

placement pertinent et équilibré

Génération géométrie 3D Murs mal générés/artefacts Géométrie minimale mais
cohérente Géométrie correcte (murs, sol, bords)

Géométrie optimisée + cohérence visuelle (UV,
normales), adaptée au jeu

5. GAMEPLAY ET INTERFACE

Critère Insuffisant (1) Satisfaisant (2) Bon (3) Excellent (4)

Boucle de jeu (états) Pas de logique de jeu Démarrage/fin partiels États clairs (menu/démarrage, jeu,
victoire)

Gestion complète (pause, restart, niveau suivant),
transitions robustes

Condition de victoire Non définie. Définie mais peu fiable Détection fiable de l’arrivée Détection robuste + feedback clair (zone, effet,
son/texte)

Passage au niveau suivant Non implémenté Implémenté demanière fragile. Implémenté et stable Progression fluide + difficulté qui augmente de
façonmaîtrisée

UI / HUD Absent UI minimale (texte brut) UI claire (niveau, instructions, état) UI soignée + options (réglages) + retour
utilisateur (messages/indicateurs)

Paramètres optionnels Non disponible 1 paramètre modifiable en dur Paramètres modifiables (vitesse,
rebond…)

Paramètres modifiables + sauvegarde/presets +
limites cohérentes

8

https://dumbgenius.github.io/experiments/mazegen/


4. TESTS

Critère Insuffisant (1) Satisfaisant (2) Bon (3) Excellent (4)

Intégration MR (tracking) Le monde 3D ne suit plus le
marqueur Suit partiellement, dérive notable Suit correctement, stable Très stable (filtrage, perte temporaire gérée),

jouable en conditions réelles
Performance temps réel Très lent / instable Jouable mais chutes fréquentes Fluide la plupart du temps Fluide et constant, marge de performance

Robustesse (perte tracking) Crash ou comportement
incohérent Se dégrade fortement Dégradation acceptable, reprise correcte Reprise propre (freeze, reset contrôlé),

expérience utilisateur solide

Tests sur données Aucun protocole de test Test sur un seul cas Test sur image/vidéo/flux caméra
Test complet + cas difficiles (éclairage, angles,
occlusion partielle)

SYSTÈME DE NOTATION

Échelle d'évaluation :
• Insuffisant (1 point) : Compétences de base nonmaîtrisées
• Satisfaisant (2 points) : Compétences de base acquises
• Bon (3 points) : Compétences intermédiaires maîtrisées
• Excellent (4 points) : Compétences avancées maîtrisées

Barème indicatif :
• 20-50 points : Niveau débutant - Compétences à développer
• 50-69 points : Niveau intermédiaire - Bases solides
• 70-84 points : Niveau avancé - Bonnemaîtrise
• 85-100 points : Niveau expert - Excellente maîtrise

L’expérience utilisateur sera prise en compte pour la note finale.

9


	Réalité Augmentée (RA)
	1. Architecture et organisation du code
	2. Vision par ordinateur (OpenCV)
	3. Intégration AR et suivi
	4. Qualité technique
	5. Algorithmes et techniques avancées
	6. Tests et validation sur données réelles
	Système de Notation

	Réalité Virtuelle (RV)
	1. Architecture et organisation du code
	2. Géométrie et Construction du Labyrinthe
	3. Sphère Texturée et Matériaux
	4. Ombres et Ombrage
	5. Éclairage
	6. Gestion des Modes AR/VR
	7. Rendu 3D et Performance
	

	Système de Notation

	Réalité Mixte (RM)
	1. Architecture et organisation du code
	2. Physique bille et plan
	3. Collisions et rebonds
	 4. Génération automatique du labyrinthe
	5. Gameplay et interface
	4. Tests
	
	Système de Notation


