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Abstract—Registration is a transformation estimation problem
between two point clouds, which has a unique and critical role
in numerous computer vision applications. The developments of
optimization-based methods and deep learning methods have
improved registration robustness and efficiency. Recently, the
combinations of optimization-based and deep learning methods
have further improved performance. However, the connections
between optimization-based and deep learning methods are still
unclear. Moreover, with the recent development of 3D sensors and
3D reconstruction techniques, a new research direction emerges
to align cross-source point clouds. This survey conducts a com-
prehensive survey, including both same-source and cross-source
registration methods, and summarize the connections between
optimization-based and deep learning methods, to provide further
research insight. This survey also builds a new benchmark to
evaluate the state-of-the-art registration algorithms in solving
cross-source challenges. Besides, this survey summarizes the
benchmark data sets and discusses point cloud registration
applications across various domains. Finally, this survey proposes
potential research directions in this rapidly growing field.

I. INTRODUCTION

Point cloud has become the primary data format to represent
the 3D world as the fast development of high precision sensors
such as LiDAR and Kinect. Because the sensors can only
capture scans within their limited view range, the registration
algorithm is required to generate a large 3D scene. Point cloud
registration is a problem to estimate the transformation matrix
between two-point cloud scans. Applying the transformation
matrices, we can merge the partial scans about the same 3D
scene or object into a complete 3D point cloud.

The value of point cloud registration is its unique and
critical role in numerous computer vision applications. Firstly,
3D reconstruction. Generating a complete 3D scene is a
basic and significant technique for various computer vision
applications, including high-precision 3D map reconstruction
in autonomous driving, 3D environment reconstruction in
robotics and 3D reconstruction for real-time monitoring un-
derground mining. For example, registration could construct
the 3D environment for route plan and decision-making in
robotics applications. Another example could be a large 3D
scene reconstruction in the underground mining space to
monitor mining safety accurately. Secondly, 3D localization.
Locating the position of the agent in the 3D environment is
particularly important for robotics. For example, a driverless
car estimates its position on the map (e.g. < 10cm) and its
distance to the road’s boundary line. Point cloud registration
could accurately match a current real-time 3D view to its
belonging 3D environment to provide a high-precision local-

ization service. This application shows that the registration
provides a solution to interact with the 3D environment for an
autonomous agent (e.g. robots or drive-less car). Thirdly, pose
estimation. Aligning a point cloud A (3D real-time view) to
another point cloud B (the 3D environment) could generate
the pose information of point cloud A related to point cloud
B. The pose information could be used for decision-making in
robotics. For example, the registration could get the robotics
arm’s pose information to decide where to move to grab an
object accurately. The pose estimation application shows that
the registration also provides a solution to know the envi-
ronment’s agent information. Since point cloud registration
plays a critical role in numerous valuable computer vision
applications, there is a significant urgent need to conduct a
comprehensive survey of the point cloud registration to benefit
these applications.

The registration problem has endured thorough investigation
from optimization aspects [5], [6], [24], [33], [44], [47], [54],
[90], [104]. Most of the existing registration methods are
formulated by minimizing a geometric projection error through
two processes: correspondence searching and transformation
estimation. These two processes alternatively conduct until
the geometric projection error is minimum. Upon the accurate
correspondences known, the transformation estimation has a
close-form solution [6].

Recently, there are many development in 3D deep learning
techniques [114], [20], [17], [107], [96]. These techniques
aim to extract distinctive features for 3D points and find
accurate correspondences. Then, these correspondences are
used to estimate a transformation with a separate transfor-
mation estimation stage. There is also some combination
of conventional registration optimization strategies and deep
learning techniques in an end-to-end framework [40], [16],
[3], [99]. Their experiments show a significant performance
gain. However, the connections between optimization-based
and deep learning methods are still unclear.

Moreover, there is an emerging topic about cross-source
point cloud registration with the development of 3D sensors,
such as Kinect and Lidar. Each 3D sensor has its distinct
advantages and limitations. For example, Kinect can generate
dense point clouds, while the view range is usually limited
to 5 meters. Lidar has a long view range while generating
sparse point clouds. Data fusion of these different kinds of
3D sensors combines their advantages and is a cross-source
point cloud registration problem [43], [41], [42]. The cross-
source point cloud registration has wide applications such
as building construction, augmented reality, and driverless
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vehicles. For example, the builders compare the 3D CAD
model with real-time LiDAR scans to evaluate the contract’s
current construction quality. The development in both same-
source and cross-source point cloud registration also requires
a comprehensive survey to summarize the recent advances.

Although there are a few existing reviews on point cloud
registration [15], [78], [87], they mainly focus on the view
of conventional point cloud registration. [116] surveys deep
learning techniques. However, the recent development of
cross-source point cloud registration has not been surveyed,
and the connections between conventional optimization and
recent deep learning methods are unclear. To stimulate point
cloud registration development in industrial and academic, we
conduct a comprehensive survey by summarizing the recent
fast development of point cloud registration (1992-2021),
including both same-source and cross-source, conventional
optimization and current deep learning methods. Moreover,
we summarize the connections between optimization strategies
and deep learning techniques.

Besides, while the recent deep learning-based registration
techniques achieve high accuracy on same-source point cloud
databases, cross-source point clouds’ performance is less re-
ported. This survey will build a benchmark to evaluate the
recent state-of-the-art registration algorithms on a cross-source
dataset.

Our contributions. Our paper makes notable contributions
summarized as follows:

• Comprehensive review. We provide the most compre-
hensive overview for same-source point cloud registra-
tion, including conventional optimization and modern
deep learning methods (1992-2021). We summarize the
challenges, analyze the advantages and limitations of
each category of registration methods. Moreover, the con-
nections between conventional optimization and modern
deep learning methods are summarized in this paper.
These connections could provide insights for future re-
search.

• Review of cross-source registration. For the first time,
we provide a literature review about cross-source point
cloud registration. This survey provides insights for data
fusion research from different 3D sensors (e.g., Kinect
and Lidar). Figure 1 shows a taxonomy of point cloud
registration.

• New comparison. We build a novel cross-source point
cloud benchmark. Then, the existing state-of-the-art reg-
istration algorithms’ performance is evaluated and com-
pared on the new cross-source point cloud benchmark.
This survey can provide a guide for choosing and devel-
oping new registration approaches for cross-source point
cloud applications.

• Applications and future directions. We summarize the
potential applications of point cloud registration and ex-
plore the research directions in real applications. Besides,
we suggest possible future research directions and open
questions in the point cloud registration field.

II. PROBLEM DEFINITION

Denote xi
T (i ∈ [1,M ]) and yi

T (j ∈ [1, N ]) as row vectors
from matrices X ∈ RM×3 and Y ∈ RN×3 respectively. X and
Y represent two point clouds, and xi and yj are the coordi-
nates of the ith and ith points in the point clouds respectively.
Suppose X and Y have K pairs of correspondences. The goal
of registration is to find the rigid transformation parameters g
(rotation matrix R ∈ SO(3) and translation vector t ∈ R3)
which best aligns the point cloud X to Y as shown below:

argmin
R∈SO(3),t∈R3

‖d(X, g(Y ))‖22 (1)

where d(X, g(Y )) = d(X,RY + t) =
K∑

k=1

‖xk − (Ryk + t)‖2
is the projection error between Xk and transformed Yk (k ∈
[1,K]). The equation 1 forms a well-known chicken-and-egg
problem: the optimal transformation matrix can be calculated
if the true correspondences are known [6][7]; in contrast,
correspondences can also be readily found if the optimal
transformation matrix is given. However, the joint problem
cannot be trivially solved. The following sections are pieces
of literature review about solving the registration problem.

III. CHALLENGES

In this section, the same-source and cross-source point cloud
registration challenges are summarized for both same-source
and cross-source point cloud registration.

A. Same-source challenges

As the point clouds are captured from the same type of
sensors but different time or views, the challenges existed in
the registration problem contain
• Noise and outliers. The environment and sensor noise

are variant at different acquisition time, and the captured
point clouds will contain noise and outliers around the
same 3D position.

• Partial overlap. Due to different viewpoint and acquisition
time, the captured point cloud is only partial overlapped.

B. Cross-source challenges

In recent years, point cloud acquisition has endured fast
development. For instance, Kinect has been widely used in
many fields. Lidar becomes use-affordable and has integrated
into the mobile phone ( e.g. iPhone 12). Moreover, many
years’ development of 3D reconstruction has made the point
cloud generation from RGB cameras possible. Despite these
improvements in point cloud acquisition, each sensor contains
its distinct advantages and limitations. For example, Kinect
can record detailed structure information but has limited view
distance; Lidar can record objects far away but has limited res-
olution. Many pieces of evidence [77], [41] show fused point
clouds from different sensors could provide more information
and generate better performance for applications. The point
clouds fusion requires cross-source point cloud registration
techniques.

Since the point clouds are captured from the different types
of sensors, and different types of sensors contain different
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Fig. 1: Taxonomy of point cloud registration

imaging mechanisms, the cross-source challenges in the reg-
istration problem are much more complicated than the same-
source challenges. These challenges can be mainly divided
into
• Noise and outliers. Because the acquisition environment,

sensor noise and sensor image mechanisms are different
at different acquisition time, the captured point clouds
will contain noise and outliers around the same 3D
position.

• Partial overlap. Due to different viewpoint and acquisition
time, the captured point cloud is only partial overlapped.

• Density difference. Due to different imaging mechanisms
and different resolutions, the captured point clouds usu-
ally contain different density.

• Scale variation. Since different imaging mechanisms may
have different physical metrics, the captured point clouds
may contain scale difference.

In this paper, we will conduct a comprehensive review of
point cloud registration and build a new cross-source point
cloud benchmark to evaluate the performance of the state-of-
the-art registration methods in solving these challenges.

IV. CATEGORIES

This section presents our taxonomy of point cloud reg-
istration, as shown in Figure 1. We categorize point cloud
registration into two types: same-source and cross-source reg-
istration. The same-source registration can be further divided
into optimization-based registration methods, feature-learning
methods, end-to-end learning registration. Figure 2 summa-
rizes the frameworks of these categories. In the following,
we give a brief introduction to each category and analyze its
advantages and limitations.

A. Optimisation-based registration methods
Optimization-based registration is to use optimization strate-

gies to estimate the transformation matrix. Most optimization-
based registration methods [104], [54], [78], [15] contain
two stages: correspondence searching and transformation es-
timation. Figure (2a) summarizes the main process of this
category. Correspondence searching is to find the matched
point for every point in another point clouds. Transformation
estimation is to estimate the transformation matrix by using the
correspondences. These two stages will conduct iteratively to
find the optimal transformation. During the iterative process,
the correspondences maybe not accurate at the beginning. The
correspondences will become more and more accurate as the
iterative process continues. Then, the estimated transformation
matrix will become accurate by using precise correspondences.
The correspondences can be found by comparing point-point
coordinate difference or point-point feature difference.

The advantages of this category are two folds: 1) rigorous
mathematical theories could guarantee their convergence. 2)
They require no training data and generalize well to unknown
scenes. The limitations of this category are that many sophis-
ticated strategies are required to overcome the variations of
noise, outliers, density variations and partial overlap, which
will increase the computation cost.

B. Feature learning methods for registration
Unlike the classical optimization-based registration meth-

ods, feature learning methods [114], [19], [35] use the deep
neural network to learn a robust feature correspondence search.
Then, the transformation matrix is finalized by one step
estimation (e.g. RANSAC) without iteration. Figure (2b) sum-
marizes the primary processes of this category. For example,
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(a) An optimization-based framework for point cloud registration.
Given two input point clouds, the correspondences and transformation
between these point clouds are iteratively estimated. The algorithm
outputs the optimal transformation T as the final solution.
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(b) A feature learning-based framework for point cloud registration.
Given two input point clouds, the features are estimated using a deep
neural network. Then, correspondence and transformation estimation
run iteratively to estimate the final solution T.
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(c) An end-to-end learning-based framework for point cloud registra-
tion. Given two input point clouds, an end-to-end framework is used
to estimate the final solution T.

Registration framework T

Point cloud

(d) An framework for cross-source point cloud registration. Given two
input point clouds, a registration framework is designed to overcome
cross-source challenges and estimate the final solution T.

Fig. 2: Different frameworks to solve the same-source point
cloud registration problem.

[114] uses AlexNet to learn a 3D feature from an RGB-D
dataset. [19] proposes a local PPF feature by using the dis-
tribution of neighbour points and then input into the network
for deep feature learning. [35] proposes a rotation-invariant
hand-craft feature and input it into a deep neural network for
feature learning. All these methods are using deep learning as
a feature extraction tool. By developing sophisticated network
architectures or loss functions, they aim to estimate robust
correspondences by the learned distinctive feature.

The advantages of this category are two folds: 1) deep
learning-based point feature could provide robust and accurate
correspondence searching. 2) The accurate correspondences
could lead to accurate registration results by using a simple
RANSAC method. The limitations of this kind of methods are
three aspects: 1) they need large training data. 2) The registra-
tion performance drops dramatically in unknown scenes if the
scenes have a large distribution difference to the training data.
3) They use a separated training process to learn a stand-alone
feature extraction network. The learned feature network is to
determine point-point matching other than registration.

C. End-to-end learning-based registration methods

The end-to-end learning-based methods solve the registra-
tion problem with an end-to-end neural network. The input
of this category is two point clouds, and the output is the
transformation matrix to align these two point clouds. The
transformation estimation is embedded into the neural net-
work optimization, which is different from the above feature-
learning methods, whose focus is point feature learning. The
neural network optimization is separate from the transforma-
tion estimation. Figure (2c) summarizes the primary process of
this category. The basic idea of end-to-end learning methods
is to transform the registration problem into a regression
problem. For example, [109] tries to learn a feature from the
point clouds to be aligned and then regresses the transforma-
tion parameters from the feature. [97] proposes a registration
network to formulate the correlation between source and target
point sets and predict the transformation using the defined
correlation. [27] proposes an auto-encoder registration net-
work for localization, which combines super points extraction
and unsupervised feature learning. [64] proposes a keypoint
detection method and estimates the relative pose simultane-
ously. FMR [40] proposes a feature-metric registration method,
which converts the registration problem from the previous
minimizing point-point projection error to minimizing feature
difference. This method is a pioneer work of feature-metric
registration by combining deep learning and the conventional
Lucas-Kanade optimization method.

The advantages of this category are two folds: 1) the neural
network specifically designs and optimizes for registration
task. 2) It could leverage both the merits of conventional math-
ematical theories and deep neural networks. The limitations
of current methods are two aspects: 1) the regression methods
regard transformation parameter estimation as a black box,
and the distance metric is measured in the coordinate-based
Euclidean space, which is sensitive to noise and density differ-
ence. 2) the feature-metric registration method does consider
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the local structure information, which is very important for
registration.

D. Cross-source registration

Cross-source point cloud registration is to align point clouds
from different types of sensors, such as Kinect and Lidar.
According to [77], [41], cross-source point cloud registration
is much more challenging because of the combination of con-
siderable noise and outliers, density difference, partial overlap
and scale difference. Several algorithms [42], [41], [43], [39]
use sophisticated optimization strategies to solve the cross-
source point cloud registration problem by overcoming the
cross-source challenges. For example, CSGM [41] transforms
the registration problem into a graph matching problem and
leverage the graph matching theory to overcome these chal-
lenges. Recently, FMR [40] shows performance on aligning
cross-source point cloud using deep learning. These methods
are trying hard to use optimization strategies or deep neural
networks to estimate the transformation matrix by overcoming
the cross-source challenges.

The benefit of cross-source point cloud registration is to
combine several sensors’ advantages and provide comprehen-
sive 3D vision information for many computer vision tasks,
such as augmented reality and building construction. How-
ever, the limitation is that the existing registration methods
show low accuracy and high time complexity, which remain
at infancy. With the recent fast development of 3D sensor
technologies, the lack of cross-source point cloud registration
research brings up a gap between sensor technology and cross-
source applications.

From section V to VIII, we contribute to summarize the
key ideas and review the recent critical development of each
category. In section IX, we also summarize the connection
between optimization-based methods and deep learning based
on our literature review.

V. OPTIMISATION-BASED REGISTRATION METHODS

The critical ideas of optimization-based methods are to
develop a sophisticated optimization strategy to achieve the
optimal solution of the non-linear problem in Equation 1.
This non-linear problem becomes challenging because of the
impact of same-source challenges (see Section III). Figure (2a)
summarizes the primary process of this category. Based on the
optimization strategy, this section presents an overview of four
types of optimization methods: ICP-based variations, graph-
based, GMM-based and semi-definite registration methods.
Several milestone methods are illustrated in Fig. 3.

A. ICP-based registration

ICP-based registration methods contain two main steps:
correspondence estimation and transformation estimation. The
critical research ideas are two parts, as shown in Figure 2a:
robust correspondence estimation and accurate transformation
estimation.

Correspondences are two points that localize in the same
position of an object or scene, where each point comes from

a different point cloud. Correspondence estimation becomes
challenging with the impact of the above discussed same-
source challenges. There are three types of distance metric:
point-point, point-plane, and plane-plane metric to get corre-
spondences. We will give details about these distance metrics
and review the related literature.

The point-point metric uses point-point coordinate distance
or feature distance to find the closest point pair as a correspon-
dence. Many variations following this concept are proposed
to get better correspondences. For example, ICP [6] uses
the original point-point distance metric. EfficientVarICP [85]
summarizes the ICP process and proposes several strategies to
improves the algorithm speed of the ICP process. IMLP [7]
improves the ICP by incorporating the measurement noise in
the transformation estimation.

Apart from the point-point distance metric, point-to-plane
metric [14], [81], [49] is to estimate the transformation pa-
rameters by minimizing the orthogonal distance between the
points in one point cloud and the corresponding local planes
in the other. Specifically, the point-to-plane algorithms run a
similar way to point-point methods but minimize error along
the surface normal, such as

argmin
R∈SO(3),t∈R3

{
K∑

k=1

wk‖nk ∗ (xk − (Ryk + t)‖2)} (2)

where wk is the weights of each correspondence, nk is the sur-
face normal at point xk, xk and yk are point-correspondence
pairs on point cloud X and Y .

Segal et al. [90] propose a generalized ICP to allows for
the inclusion of arbitrary covariance matrices in both point-
to-point and point-to-plane variants of ICP. The objective is to
optimize

argmin
T
{

K∑
k=1

‖dT (CY
k +TCX

k TT )−1d‖2} (3)

where {CX
k } and {CY

k } are covariance matrices associated
with the point cloud X and Y . T is the transformation
parameters that consists of R and t, d is a distance metric.
For standard point-to-point ICP, it is a special case by setting
CY

k = I and CX
k = 0. Also, for point-to-plane ICP is a

limiting case of this generalized ICP by setting CY
k = P−1k

and CX
k = 0, where P−1k is the surface normal at xk. The

generalized ICP can also be applied to plane-to-plane ICP.
The basic idea is to consider the point cloud is a sampled
2D manifold and use the local surface normal to represent the
points.

In addition, plane-to-plane distance metric [10], [48], [33]
is adopted to estimate the correspondences. The objective is
similar to point-point distance metric, which is

argmin
R∈SO(3),t∈R3

{
K∑

k=1

‖nxk − (Rnyk + t‖2)} (4)

where nx and ny are surface normal of point cloud X and
Y .

Regarding the transformation matrix, there are four kinds
of methods: SVD-based [6], Lucas-Kanade (LK) algorithm
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Fig. 3: Chronological overview of the most relevant optimization-based methods.

[4] and Procrustes analysis [22]. Given correspondences, the
SVD-based estimation methods [6], [90], [9], [106], [7] per-
form singular value decomposition (SVD) to the difference
of correspondences. Low et al.[63] propose a linear approx-
imation of the rotation matrix and estimate the transforma-
tion using SVD. It obtains much faster efficiency and more
accuracy. LK algorithm [4] estimates transformation using
Jacobian of feature difference and approximation methods
(e.g. Gauss-Newton). LM-ICP [32] leverages the Levenberg-
Marquardt algorithm to estimate the transformation by adding
a damping factor to the original LK algorithm. This method
replaces the Euclidean distance with the Chamfer distance
and uses a Levenberg-Marquardt algorithm to compute Tk.
The LM-ICP method is superior to the standard ICP method,
especially in treating high overlapping ratios. ICP [6] proposes
a closed-form solution by using singular value decomposition
(SVD) to calculate the transformation matrix. Eggert et al.
[25] summarise transformation estimation methods in four
categories and compare their performance.

A Procrustes registration (rotation, scale, and translation,
as defined in [22]) converts the transformation estimation as
a linear least-squares problem. The final pose (P ) can be
estimated as a closed-form solution P = (XH

2 X1)
−1XH

2 x1,
where x1 and x2 is the input point clouds, X2 = [x2 1].
Since Procrustes registration requires given correspondences,
the performance is highly relied on the accuracy of correspon-
dence searching. ProcrustesDTW [26] propose Dynamic Time
Warping (DTW) [72] to establish an automatic correspondence
between the landmark-based shapes to be registered, which
avoids the need for initial manual correspondence and same
landmark-set lengths. This analysis is only conducted experi-
ments on 2D, and further research on 3D is required.

B. Graph-based registration

Graph-based registration is another popular methods. The
mains idea of graph-based registration is to tackle point
cloud registration using a non-parametric model [122]. Since
a graph consists of edges and vertexes, GM methods aim
to find the point-point correspondences between two graphs
by considering both vertexes and edges. This correspondence
searching problem in GM methods can be considered as an

optimization problem. The research direction is to develop
a better graph matching optimization strategy to find more
accurate correspondences. As shown in Figure 2a, accurate
correspondences could contribute to a better transformation
estimation.

To solve the optimization problem, based on objective
functions’ constraints, we can divide the GM methods into
two categories: second-order methods and high-order meth-
ods. Second-order GM methods measure both the vertices-to-
vertices and edges-to-edges similarity [61]. High-order GM
methods involve more than two points, such as similarity of
triangle pairs [23].

The optimization of graph matching belongs to the quadratic
assignment problem (QAP) [62], which is an NP-hard problem
[34]. The key to solving this QAP problem is to design ap-
proximation strategies. Based on their approximation method,
we divide the second-order GM methods into three categories:
doubly stochastic relaxation, spectral relaxation and semi-
definite programming relaxation. Using a doubly stochastic
matrix, the optimizing GM is transformed as a non-convex
QAP problem. Therefore, many methods only find a local op-
timum. For example, [2] uses a linear program to approximate
the quadratic cost. CSGM [41] uses a linear program to solve
the graph matching problem and apply it to solve the cross-
source point cloud registration task. High-order graph [23]
uses an integer projection algorithm to optimize the objective
function in the integer domain. FGM [117] factorizes the large
pairwise affinity matrix into some smaller matrices. Then,
the graph matching problem is solved with a simple path-
following optimization algorithm. Spectral graph [57] uses a
spectral relaxation method to approximate the QAP problem.
The semi-definite programming (SDP) relaxation is to relax
the non-convex constraint using a convex semi-definite. Then,
a randomized algorithm [94] or a winner-take-all method [89]
is applied to find the correspondences between graphs.

High-order graph matching methods is to compare the
hyper-edges or hyper-nodes to find the correspondences. The
advantage of high-order GM methods is that they are invariant
to affine variations (e.g. scale difference). For example, Zass
et al. [113] design a probabilistic approach to solve the
high-order graph matching problem. Duchenne et al. [23]
designs a triangle similarity and convert the graph matching
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problem into a tensor optimization problem. Recently, Zhu
et al. [121] propose an elastic net to control the trade-off
between the sparsity and the accuracy of the matching results
by incorporating the Elastic-Net constraint into the tensor-
based graph matching model. These methods are all affine-
invariant.

C. GMM-based registration

Gaussian mixture models (GMM) is also a popular kind of
methods in solving point cloud registration. The critical idea of
GMM-based methods is to formulate the registration problem
of Equation (1) into a likelihood maximization of input data.
After the optimization, both the transformation matrix and
parameters of Gaussian mixture models are calculated. The
advantages of the GMM-based method are robust to noise and
outliers [8], [82] since these methods align the distributions.
The research direction is to develop an optimization strategy
to optimize the transformation matrix by maximizing the
likelihood.

CPD [73] introduces a motion drift idea into the GMM
framework by adding constraints to transformation estimation.
CH-GMM [30] combines the convex hull (a tighter set of
original point set) and GMM to reduce the computation
complexity. JRMPC [29] recasts the registration as a clustering
problem, where the transformation is optimizing by solving the
GMM. Recently, DeepGMR [112] uses deep learning to learn
the correspondences between GMM components and points,
and the transformation and GMM parameters can be estimated
by a forward step.

D. Semi-definite registration

The main idea of semi-definite registration is to develop
sophisticated approximation strategies. The reason is that the
correspondences optimization of equation (1) is a quadratic
assignment problem when considering paired correspondences
constraint. Global optimization of such problem is an NP-hard
problem [62]. However, a good approximation to the global
solution of correspondences can be achieved. If we define the
correspondences assignment matrix as W = {0, 1}, wij = 1
means point i is correspondent with point j and 0 otherwise.
The original correspondence assignment matrix is not semi-
definite as the eigenvalue value λmin is not guaranteed to be
non-negative.

The research direction is to build different projection for the
original correspondences so that the estimation of W can be a
semi-definite optimization problem. This subsection describes
several popular ways to convert the original optimization of
the equation (1) into a semi-definite optimization problem.

Symmetric matrix. To estimate the correspondences, we
introduce a symmetric matrix A ∈ RN2×N2

describes the
matching potentials between pairs of points and Y = ‖X‖2.
The eigenvalue of Y is non-negative. According to SDRSAC
[54] and DS++ [24], the optimization of correspondences is
to solve the problem of maxXY AY with four conditions: (1)
X should be {0, 1}, (2) the row sum of X should be no
larger than 1, (3) the column sum of X should be no larger
than 1, and (4) the sum of X should equal to the number

of correspondence pairs. By solving the above maximization
problem, we can obtain the global solution of correspondences.
The transformation can be calculated with a closed-form
solution by using the correspondences [43]. Recently, there
are several algorithms [28], [55], [57] focus on solving non-
rigid registration. They have all shared a similar theory of
semi-definite relaxation.

Laplacian matrix. The point cloud registration problem in
Equation 1 can also be re-written in more compact by using
trace notation as follows:

S = min
R,t

∑
i,j

‖yi − (Rjxij + tj)‖2

= tr(Y LY T − 2Y XTRT )

(5)

where L = A − WB−1WT is the Laplacian of a
weighted graph, each corresponding to a 3D point from Y .
Aii =

∑
j wij and Bjj =

∑
i wij are diagonal matrices,

wij = {0, 1} determines if point i of X is matched with
point j of Y . Since the graph Laplacian has positive semi-
definite properties, this problem can be solved using semi-
definite relaxation. Recently, PSR-SDP[44] uses the semi-
definite relaxation to solve the multiple point sets registration.
Teaser[105] uses graduated non-convexity to solve the rota-
tion sub-problem. This strategy leverages Douglas-Rachford
Splitting to certify global optimality efficiently. This method
solves the high computation cost in SDP relaxation. Recent
OPRASANC [58] introduces a graduated optimization strategy
to largely alleviate the effect of local minima and obtains better
efficiency than Teaser.

Semi-definite relaxation is a strong convex relaxation that
achieves the global minimum of the original problem. How-
ever, semi-definite relaxation usually faces the scalability
problem [47] which is only tractable for up to 15 points. [53]
utilizes the Markov random field techniques to approximate
their linear programming relaxation solution. PM-SDP[67]
obtains better efficiency by reducing the dimension of semi-
definite constraints. However, they still can only handle the
middle size of the point cloud registration. The efficiency is
still a remaining research problem.

VI. FEATURE-LEARNING METHODS FOR REGISTRATION

The main idea of feature-learning methods is to use the
deep feature to estimate accurate correspondences. Then, the
transformation can be estimated using one-step optimization
(e.g. SVD or RANSAC) without iteration between correspon-
dence estimation and transformation estimation, as shown in
Figure 2b. The research direction is to design advanced neural
networks to extract distinctive features. In this section, several
feature-learning registration methods are reviewed. Regarding
the data format of deep learning, these registration methods
are divided into learning on volumetric data and point cloud.
Several milestone methods are illustrated in Fig. 4.

A. Learning on volumetric data

3DMatch [114] trains a parallel network from RGBD im-
ages. The input of 3DMatch is 3D volumetric data, and the
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2017

3DMatch 
（Zeng  et al.)

Volumetric-based
Point Cloud-based

3DSmoothNet
(Zan et al.)

2019

FCGF 
(Choy et al.)

2020

PPFNet
(Deng et al.)

PPF-FoldNet
Deng et al.

3DFeatNet
(Yew et al.)

CGF
(Khoury et al.)

CapsuleNet
(Zhao et al.)

OctNet
(Riegler et al.)

O-CNN
(Wang et al.)

IDAM 
(Li et al.)

RPMNet 
(Yew et al.)

AlignNet
(Gross et al.)

SiamesePointNet
(Wang et al.)

DCP
(Wang et al.)

2018 2021

Fig. 4: Chronological overview of the most relevant feature-learning registration methods.

output is a 512-dimensional feature for a local patch. 3DMatch
can extract a local feature for 3D point clouds. Figure 5 shows
its overall framework, which is an example case of the neural
network in Figure 2b. For each interest point of a 3D point
cloud, the 3DMatch is to extract a feature to incorporate the
local structure around the interest point. In 3DMatch, the 3D
point cloud needs to convert into 3D volumetric data and then
extract the local representation by feeding the 3D volumetric
data into the neural network. This method has two obvious
drawbacks: volumetric data requires large Graphic process unit
(GPU) memory and sensitive to rotation variations.

point cloud Volumetric
Data CNN-Net Feature

Loss

point cloud Volumetric
Data CNN-Net Feature

Fig. 5: The overall framework of 3DMatch, which is an
example of neural networks in Figure 2b using volumetric
data.

3DSmoothNet [35] introduces a pre-processing method to
align the 3D patches and calculate the volumetric data based
on the aligned 3D patches. By feeding the aligned volumetric
data into a convolution neural network, the extracted features
are rotation-invariant. Specifically, a local reference frame
(LRF) is estimated using the eigendecomposition of all points’
covariance matrix. After the point clouds are aligned using
the LRF, Gaussian smoothing is applied to the input grids
to get a smooth density value (SDV) voxelization. Then, the
SDV is fed into a network for feature extraction. To improve
the efficiency of volumetric-based descriptor, FCGF [17] uses
1× 1× 1 kernel to extract a fast and compact metric features
for geometric correspondence.

There is much literature that focuses on handling the
limitation of large memory cost. The key idea is to remove
empty voxels since the 3D point cloud is usually sparsely
located in the 3D volumetric data. OctNet [83] uses Octree to
hierarchically divide the volumetric data into an unbalanced

tree where each leaf node stores the feature presentation.
Tatarchenko et al. [92] use Octree to decode the point cloud
and learns distinctive representation. Similarly, O-CNN [98]
proposes an octree-based convolution neural network for 3D
shape analysis.

B. Learning on point cloud

Instead of feeding the network with volumetric data, PPFNet
[19] learns local descriptors on pure geometry and is highly
aware of the global context. This method uses a point pair
feature (PPF) [21] to pre-process the input point cloud patches
to achieve rotation invariant. Then, the point clouds are input
into a PointNet [80] to extract a local feature. Then, a global
feature is obtained by applying a max-pooling operation. Both
the global and local features are input in an MLP block to gen-
erate the final correspondence search feature. The limitation
is that it requires a large amount of annotation data. To solve
this issue, PPF-FoldNet [18] proposes an unsupervised method
to remove the annotation requirement constraint. The overall
framework is shown in Figure 6. The basic idea is to use
PointNet to encode a feature and use a decoder to decode the
feature into data be the same as the input. The whole network
is optimized by using the difference between the input and
output using Chamfer loss. Similarly, SiamesePointNet[118]
produces the descriptor of interest points by a hierarchical
encoder-decoder architecture.

point cloud PPF Encoder

DecoderLoss

Fig. 6: The overall framework of PPFNet,, which is an example
of neural networks in Figure 2b using point cloud.
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By not requiring manual annotation of matching point
cluster, 3DFeatNet [110] introduces a weakly-supervised ap-
proach that leverages alignment and attention mechanisms to
learn feature correspondences from GPS/INS tagged 3D point
clouds without explicitly specifying them. More specifically,
the network takes a set of triplets containing an anchor, pos-
itive and negative point cloud. They train the neural network
with the triplet loss by minimizing the difference between the
anchor and positive point clouds while maximizing the differ-
ence between the anchor and negative point clouds. Alignment
[36] focuses on the partially observed object alignment by
using a tracking framework, which is trying to estimate the
object-centric relative motion. Moreover, this approach uses
a neural network that takes the noisy 3D point segments of
objects as input to estimate their motion instead of approxi-
mating targets with their centre points. [108] utilizes both the
colour and spatial geometric information to solve the point
cloud registration.

Since the ICP requires hard assignments of closest points,
it is sensitive to the initial transformation and noisy/outliers.
Therefore, the ICP usually converges to the wrong local
minima. RPMNet [111] introduces a less sensitive to initial-
ization and more robust deep learning-based approach for rigid
point cloud registration. This method’s network can get a
soft assignment of point correspondences and can solve the
point cloud partial visibility. The deep closest point (DCP)
[99] employs a dynamic graph convolutional neural network
for feature extraction and an attention module to generate
a new embedding that considers the relationships between
two point clouds. Besides, a singular value decomposition
module is used to calculate rotation and translation. IDAM
[59] incorporates both geometric and distance features into the
iterative matching process. Point matching involves computing
a similarity score based on the entire concatenated features of
the two points of interest. Yang et al. [107] find that more
compact and distinctive representations can be achieved by
optimizing a neural network (NN) model under the triplet
framework that non-linearly fuses local geometric features in
Euclidean spaces. The NN model is trained by an improved
triplet loss function that fully leverages all pairwise relation-
ships within the triplet. Moreover, they claimed that their fused
descriptor is also competitive to deeply learned descriptors
from raw data while being more lightweight and rotational
invariant.

VII. END-TO-END LEARNING-BASED REGISTRATION

The main idea of end-to-end learning-base registration
methods is that two-point clouds fed into the neural network,
and output is the transformation matrix between these two
point clouds. There are two categories: (1) considering the
registration as a regression problem and using the neural
network to fit a regression model for the transformation matrix
estimation [97], [109], [20], [75]; Figure 8 shows the overall
framework for these methods. (2) considering the registration
as an end-to-end framework by the combination of neural
network and optimization [40], [16]. Figure 2c shows the
overall framework of these methods. These two categories

aim to train a deep neural network to directly solve the
registration problem in equation 1. Several milestone methods
are illustrated in Fig. 7.

Regression
Optimization and
neural network

RelativeNet
(Deng et al.)

2019 2020

DirectReg 
(Deng et al.)

3DRegNet
(Pais et al.)

DeepVCP
(Lu et al.)

DGR 
(Choy et al.)

DeepGMR 
(Yuan et al.)

FMR 
(Huang et al.)

DGMC
(Fey et al.)

2021

Fig. 7: Chronological overview of the most relevant end-to-end
learning registration methods.

A. Registration by regression

Deng et al. [20] propose a relativeNet to estimate the
pose directly from features. Lu et al. [65] propose a method
(DeepVCP) to detect keypoints based on learned matching
probabilities among a group of candidates, which can boost the
registration accuracy. Pais et al. [75] develop a classification
network to identify the inliers/outliers and uses a regression
network to estimate the transformation matrix from the inliers.
Figure 8 shows the overall framework of these registration
methods by regression. The connection to Fig. 2c is that the
transformation module is implemented with an X-Net module.

point cloud Encoder

point cloud Encoder

X-Net T

Fig. 8: The overall framework of end-to-end learning-based
regression methods, which is an example of Figure 2c. Two
global features are extracted firstly. Then, the two features fed
into a X-Net to estimate a transformation matrix T .

B. Registration by optimization and neural network

The main idea of this category is to combine the con-
ventional registration-related optimization theories with deep
neural networks to solve the registration problem in Equation
1. Figure 2c shows a summary of these methods. PointNetLK
[3] uses the PointNet[80] to extract global features for two
input point clouds and then use a inverse compositional (IC)
algorithm to estimate the transformation matrix. By estimating
the transformation matrix, the objective is to minimize the
feature difference between the two features. For this feature-
based IC algorithm, the Jacobian estimation is challenging.
PointnetLK uses an approximation method through a finite
difference gradient computation. This approach allows the
application of the computationally efficient inverse compo-
sitional Lucas-Kanade algorithm. Huang et al. [40] further
improve PointNetLK with an autoencoder and a point distance
loss. Meantime, it can reduce the dependence on labels.
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DeepGMR [112] uses a neural network to learn pose-invariant
point-to-distribution parameter correspondences. Then, these
correspondences are fed into the GMM optimization module
to estimate the transformation matrix. DGR [16] proposes
a 6-dimensional convolutional network architecture for inlier
likelihood prediction and estimate the transformation by a
weighted Procrustes module. These methods show that the
combination of conventional optimization methods and recent
deep learning strategies obtain better accuracy than previous
methods.

VIII. CROSS-SOURCE POINT CLOUD REGISTRATION

For the first time, a comprehensive review of cross-source
point cloud registration is conducted in this section. The
existing cross-source registration methods are divided into
two categories: optimization-based methods and learning-
based methods. The research direction is to design advanced
registration framework (e.g. Fig. 2d) to overcome the cross-
source challenges (discussed in section III) and solve the
Equation 1. Several milestone methods are illustrated in Fig.
9.

2014

Optimization-based
Learning-based

CSC2F 
(Peng et al.)

FMR
（Huang et al.)

2015 2016 2017

CSGMM 
(Huang et al.)

GM-CSPC
(Huang et al.)

CSGM
(Huang et al.)

2018

GCTR
(Huang et al.)

RSER 
(Mellado et al.)

2019 2020 2021

Fig. 9: Chronological overview of the most relevant cross-
source point cloud registration methods.

A. Optimization-based methods:

The main idea of optimization-based methods is to design
sophisticated optimization strategies to solve the point cloud
registration problem in the equation 1. The optimization strate-
gies are similar to the same-source registration but require a
more complicated version to overcome the severe cross-source
challenges. Since the registration algorithm is usually more
complicated than the same source, the proposed algorithms are
usually a registration framework. Figure 2d visually summa-
rizes the ideas. CSC2F [77] proposes a first cross-source point
cloud registration method by using a coarse-to-fine method.
The registration is solved by using ICP. Following the coarse-
to-fine strategy, CSGMM [42] applies GMM-based algorithm
to estimate the transformation. GM-CSPC [43] assumes the
cross-source point clouds are coming from the same Gaussian
mixture models and the two input point clouds are two
samples from the Gaussian mixture. The GM-CSPC estimates
both the GMM parameters and transformation simultaneously.
CSGM [41] converts the registration problem into a graph
matching problem and estimate the transformation matrix by
graph matching optimization. Recently, [39] introduce high-
order constraints to correspondences searching and convert the

registration problem into a tensor optimization problem. RSER
[69] proposes a scale estimation method and use RANSAC to
calculate the transformation after scale normalization.

The advantages of this category are the same as the same-
source optimization-based registration methods, which contain
are two folds. Firstly, rigorous mathematical theories could
guarantee their convergence or performance. Secondly, they
require no training data and generalize well to unknown
scenes. However, the challenges of this category are that the
sophisticated strategies require large computation cost, and the
performance of these methods is varying at different datasets.

B. Learning-based methods:

Based on our knowledge, FMR [40] is the first learning-
based method to solve the cross-source point cloud registra-
tion. This method combines the optimization and deep neural
network and estimates the transformation by minimizing the
global feature difference. This method has demonstrated con-
siderable noise, outliers and density difference. Because the
deep neural network is good at robust feature extraction, the
learning-based method is a promising direction to solve cross-
source point cloud registration.

Although there are many learning-based registration algo-
rithms, the performance on the cross-source dataset is less
reported. In this paper, we build a new cross-source point cloud
benchmark and evaluate several state-of-the-art registration
algorithms’ performance on this benchmark. This comparison
will provide some insights for future research.

IX. CONNECTIONS BETWEEN OPTIMIZATION-BASED
METHODS AND DEEP LEARNING:

The connections between deep learning and optimization-
based methods are: the deep learning technique could serve
as a feature extraction tool to replace the original point
coordinate. The conventional optimization could provide a
theoretical guarantee for the convergence. Firstly, advanced
loss calculation strategies are developed to apply an optimiza-
tion strategy to calculate an estimated transformation from the
learned feature. Secondly, calculate the loss between the esti-
mated transformation and ground truth. Many existing meth-
ods [99], [40] demonstrate that combining both advantages
could achieve both high accuracy and efficiency. For instance,
deep closest point (DCP)[99] uses deep features to estimate
correspondences and use SVD to calculate the transformation.
FMR [40] applies deep learning to extract global feature and
uses Lukas-Kanade (LK) algorithm to minimize the feature
difference. Fey, M. et al. [31] uses deep learning to calculate
the soft correspondences and use message passing network
to refine the correspondences. DeepGMR [112] uses deep
learning to calculate the correspondences between Gaussian
models and points and optimize the transformation based on
GMM optimization.

These existing approaches provide some initial trials on
conventional optimization and deep neural networks to solve
registration problems. However, both the accuracy robustness
and efficiency are still required to improve further. Combin-
ing conventional optimization theory and recent deep neural
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Dataset sensor sceneNum indoor outdoor dense sparse ground-truth xyz corlor
3DMatch depth 56 X × X × synthetic X X

KITTI LiDAR 8 × X × X synthetic X ×
ETHdata LiDAR 8 × X × X synthetic X X
3DCSR Indoor 21 X X X X manual X X

Table I: Summary of existing same-source and cross-source dataset.

networks is a promising way to provide high accuracy and
efficiency and theoretically guarantee current deep learning-
based registration methods. The research direction is to design
advanced loss calculation strategies to optimize the neural
network by combining the existing optimization strategies.

X. EVALUATIONS

This section summarises the existing metrics and sum-
marises the performance of existing methods on the existing
same-source datasets. Then, we introduce a new cross-source
dataset and conduct comparison experiments for the existing
registration methods. This section will provide a benchmark
for both same-source and cross-source point cloud registration.

A. Evaluation metrics

rmseP: Root square mean error of projection (rmseP) is
calculated as the mean of point-point projection error after
applying the transformation. rmseT: Root square mean error
of transformation (rmseT) represents the root-mean-square
error between estimated transformation gest and ground truth
transformation ggt. RE: The rotation error (RE) is calculated
as the Euclidean distance of rotation parameters between
estimated rest and ground truth rgt. The rotation parameters
are angles on three axes. TE: The translation error (TE) is
calculated as the Euclidean distance of translation parameters
between estimated test and ground truth tgt. Recall: The recall
represents the number of point cloud pair that RE and TE are
below a threshold to the total pair number. Alternatively, the
rmseP is below a threshold.

B. Same-source dataset

ModelNet40 The ModelNet40 [103] is a comprehensive
clean collection of 3D CAD models for objects containing
40 categories and 13356 models in total. The CAD models
of each category have divided into test and train parts. Each
model contains several nodes and faces. A random rotation and
translation transform each model to evaluate the registration.
The transformed model and the original model are utilized to
evaluate the performance of the registration algorithm.

3DMatch: contains a total of over 200K RGB-D images
of 62 different scenes, such as 7-Scenes, SUN3D, RGB-D
Scenes v.2 and Halber. Each scene is divided into several frag-
ments. Each fragment is reconstructed from 50 depth frames
using TSDF volumetric fusion and saved to a .ply file. The
reconstruction datasets are captured in different environments
with different local geometries at varying scales and built with
different reconstruction algorithms. During the experiments,
fifty-four scenes are used for training and eight scenes for
testing.

Methods Average Recall Thresholds
ICP(p2point)[120] 6.04 TE(0.3m),RE(15◦)
ICP(p2plane)[120] 6.59 TE(0.3m),RE(15◦)

Super4PCS[68] 21.6 TE(0.3m),RE(15◦)
GO-ICP[106] 22.9 TE(0.3m),RE(15◦)

FGR[119] 42.7 TE(0.3m),RE(15◦)
RANSAC [86] 66.1 TE(0.3m),RE(15◦)
SpinImage [46] 34 rmseP(0.2m)

SHOT [88] 27 rmseP(0.2m)
FPFH [86] 40 rmseP(0.2m
USC [93] 43 rmseP(0.2m)

PointNet [80] 48 rmseP(0.2m)
CGF [50] 56 rmseP(0.2m)

3DMatch [114] 67 rmseP(0.2m)
PPFNet [19] 71 rmseP(0.2m)
FCGF [17] 82 rmseP(0.2m)
DGR [16] 91.3 TE(0.3m),RE(15◦)

PointNetLK [3] 1.61 TE(0.3m),RE(15◦)
DCP [99] 3.22 TE(0.3m),RE(15◦)

Table II: Comparison on 3DMatch datasets.

KITTI: The odometry dataset is initially designed for
stereo matching performance evaluation, which contains stereo
sequences, Lidar point clouds, and ground truth poses. It
consists of 22 stereo sequences, where 11 sequences (00-10)
have ground-truth trajectories for training, and 11 sequences
(11-21) have no ground truth for evaluation. The Lidar point
clouds are captured by using a Velodyne laser scanner.

Methods Average Recall Thresholds
FGR [119] 0.2 TE(0.6m),RE(5◦)

RANSAC [86] 34.2 TE(0.6m),RE(5◦)
FCGF [17] 98.2 TE(0.6m),RE(5◦)
DGR [16] 98.0 TE(0.6m),RE(5◦)
FPFH [86] 58.95 TE(2m),RE(5◦)
USC [93] 78.24 TE(2m),RE(5◦)
CGF [50] 87.81 TE(2m),RE(5◦)

3DMatch [114] 83.94 TE(2m),RE(5◦)
3DFeatNet [110] 95.97 TE(2m),RE(5◦)

Table III: Comparison on KITTI datasets.

ETHdata This group of datasets was recorded with Laser,
IMU and GPS sensors. The point clouds are captured by using
Hokuyo UTM-30LX. A theodolite is utilized to guarantee the
precision of the ”ground truth” positions of the scanner be
in the millimetre range. The dataset contains eight scenes
which consist of two indoor, five outdoor and one mixed
environment. Each scene contains around 30 fragments and
stores them in a CSV file. The dataset contains global aligned
frames and local frames with ground-truth transformation.

C. New cross-source benchmark

The above literature review shows that most of the current
research focuses on same-source point cloud registration.
While several existing methods [77], [42], [69], [39] are
targeted on cross-source domains, the accuracy is low and
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Methods Average Recall Thresholds
FPFH [86] 67 TE(2m),RE(5◦)
USC [93] 100 TE(2m),RE(5◦)
CGF [50] 92.1 TE(2m),RE(5◦)

3DMatch [114] 33.3 TE(2m),RE(5◦)
3DFeatNet [110] 95.2 TE(2m),RE(5◦)

Table IV: Comparison on ETHdata datasets.

time complexity is huge, which remain at infancy. There is a
gap between sensor technology and cross-source applications.
We believe this is a large part attributed to the lack of an
appropriate dataset.

In this paper, we introduce a benchmark dataset for cross-
source point cloud registration to bridge this gap. Specifically,
the dataset is captured using recent popular sensors: LiDAR,
Kinect and camera sensors. In total, 202 pairs of point clouds,
where two scenes are captured using Kinect and RGB camera,
19 scenes are acquired from LiDAR and Kinect sensors.
The dataset contains the most common objects or scenes in
an indoor workspace environment. We manually align them
to obtain the ground-truth transformation. Because different
types of sensors have different imaging mechanisms and
sensor noise, their acquired cross-source point clouds mainly
contain cross-source challenges, as discussed in Section III.
The proposed dataset could serve as a dataset to evaluate the
point cloud registration on cross-source data.

1) Benchmark dataset: 3DCSR: We have two kinds of
cross-source point cloud: (1)- Kinect and Lidar and (2) Kinect
and 3D reconstruction.

Kinect and Lidar: Kinect and Lidar active sensors are used
to capture the same scene separately. For Kinect data, we use
the KinectFusion [101] in Microsoft SDK 2.0 to generates
point clouds. For Lidar data, we use the integrated software
to record. During the acquisition, Lidar is stable in a scene
for one capture and Kinect record several parts in this Lidar
captured scene. For each scene, it is a point cloud reflect an
indoor workspace. There are 19 scenes in this category. For
each scene, there are different Kinect point clouds. In total, we
generate 165 pairs of cross-source point clouds using Kinect
and Lidar.

Kinect and 3D reconstruction: Kinect and iPhone RGB
camera are utilized to record the same object/scene separately.
The Kinect-based point cloud is generated using KinectFusion,
and the camera-based point cloud is generated using VSFM
[102] from 2D images. The recorded point clouds are cross-
source point clouds. There are two scenes in this acquisition:
point clouds of 18 simple indoor objects and 19 multiple
objects. In total, we generate 37 pairs of cross-source point
clouds using Kinect and iPhone camera.

Annotation: Before annotating, we manually remove the
apparent outliers in the air of KinectFusion and 3D recon-
structed point clouds. Then, we crop a related part from the
Lidar scene. After then, we sample the Kinect data to 3 million
for simple scenes and 4 million for complex scenes with
the CloudCompare software. When the sampled Kinect point
cloud, 3D reconstructed point cloud and cropped Lidar point
cloud are ready, we manually align them to get the annotations.
For each pair, we cost one computer science expert and cross-

2D sensor (VSFM)

3D sensor (Kinect)

Noise,
outliers

Partial overlap,
density difference

Fig. 10: An example shows the challenges of cross-source
point clouds. Considerable noise, outlier, density difference
and partial overlap universally exist in the cross-source pair.

check with two other experts.
Challenges: There is a mixture of variations of noise,

outliers, density difference, and partial overlap for cross-source
point clouds. See section III for detailed explanation. Figure
10 shows an example to demonstrate the challenges in cross-
source point clouds.

2) Evaluation: Then, we run evaluation experiments for
two objectives: (1) evaluating the state-of-the-art point cloud
registration algorithms on the proposed benchmark dataset; (2)
providing a research direction based on their performance. The
registration recall is calculated as the number of point cloud
pair that RE < 15◦ and TE < 0.3m to the total pair number.

Baselines: (1) Same-source point cloud registration. FGR
[119] is selected for the classic optimization-based algorithm.
The FPFH descriptor is used for FGR. FMR [40] represents the
feature-metric registration, which uses a semi-supervised ap-
proach to optimize a feature-metric error. DGR [16] is a repre-
sentative for the correspondence-learning registration that uses
feature learning to get correspondences and integrates with a
weighted Procrustes algorithm. DGR has already demonstrated
better performance than the state-of-the-art feature-learning
methods. Both FMR and DRG are trained in 3DMatch and
evaluated on the proposed cross-source benchmark.

(2) Cross-source point cloud registration. Since [77] uses
ICP, [42] uses Gaussian mixture model alignment, [69] uses
RANSAC to solve the cross-source registration problem, we
only compare their registration parts. We also re-implement
and compare with GCTR [39], which is a recent work focus on
cross-source point cloud registration. Due to the huge memory
cost of Gaussian mixture model and huge computation cost of
GCTR, we follow their original papers to uniform sample the
original point clouds to approximately 2000 and 200 for GMM
alignment [42] and GCTR [39] respectively.

Table V shows that the current state-of-the-art registra-
tion algorithms, including optimization-based (FGR), feature-
metric (FMR) and correspondence learning (DGR) methods,
are still facing difficulty to align cross-source point clouds.
Among these existing methods, DGR obtains the best per-
formance in solving the cross-source point cloud registration
problem.
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Type Method Recall TE RE(deg) Time(s)

Same
source

FGR 1.49% 0.07 10.74 2.23
PointnetLK 0.50% 0.09 12.54 2.25
FMR 17.8% 0.10 4.66 0.28
DGR 36.6% 0.04 4.26 0.87

Cross
source

[77] 24.3% 0.38 5.71 0.19
[42] 1.0% 0.71 8.57 18.1
[69] 3.47% 0.13 8.30 0.03
GCTR[39] 0.50% 0.17 7.46 15.8

Table V: Quantitative comparisons on the cross-source dataset.

Since cross-source point clouds contain cross-source chal-
lenges, keypoint-based methods may be a promising research
direction. The reason lies in that robust keypoint extraction
could find the key information from the noisy point clouds
and overcome the cross-source challenges. For example, the
DGR uses neural networks to generate a high probability
for critical correspondences. Then, these key correspondences
could play a critical role in transformation estimation by using
a weighted Procrustes algorithm. That is the reason for the best
performance.

XI. APPLICATIONS

Point cloud registration is a critical technique in many
applications. This section introduces the point cloud registra-
tion role in various applications and summarizes the research
directions in each application.

A. Construction

BIM (Building Information Modelling) is a new generation
of information storage and manipulation systems that widely
used for construction purpose and building management. It
usually contains 3D model and properties of the building.
Previous computer-aided BIM design are limited to simple
guides and theoretical planning since there is no interact with
the real physical world.

Point cloud can overcome this limitation and offer the ability
to align the digital models with physical space in exacting
detail (see Figure 11 as an example). The reason is that point
cloud provides the ability to effectively import 3D physical
space into a digital format and augment your existing digit
models. Point cloud will make dynamic evaluation, visualiza-
tion and renovation projects much easier.

Although point cloud will bring technology renovation in
construction [12], two obstacles limit its wide applications.
Firstly, 3D sensors are costly. A Leica RTC360 Laser Scanner
Kit could cost about $100,000. Secondly, the efficiency is low
(> 20 minutes to capture a 360◦ scene). The main factor of
low efficiency lies in the slow registration algorithm. Although
some improvements are proposed for point cloud registration
[51], [52], [115], [60], there is still a lack of robust and
fast registration algorithms. The requirement of construction is
high precision. Developing a fast and high accurate registration
algorithm with construction field knowledge is urgent and will
contribute to the construction field.

Fig. 11: Point cloud in BIM model [37].

B. Mining space

In the mining area, the point cloud can provide a 3D
experience mine and aid in monitoring underground tunnel
wall movement and detecting pit wall instability, confirming
development heading, and various other applications. For
example, drone surveys and underground scanning equipment
are changing how mining companies see their mine, giving
them the ability to access a nearly real-time view of the terrain
and development progress. The point cloud registration is the
fundamental technology that dominates the success of these
applications.

Point cloud has become a key data component for planning,
operations and decision-making in the mining fields [84]. For
example, [70], [71] conclude that the integration of terrestrial
laser scanning (TLS) with discrete element modelling (DEM)
can be used to prevent rock falls in underground excavations
to enhance worker safety, which will reduce the fatality rate.
However, it requires an adequate rock mass characterization
and structural mapping where point cloud registration is the
key technology. [56] uses point cloud to measure the vertical
safety pillar volume and analyze the stability of the under-
ground mine environment. The point cloud can also be used
to build the terrain, which provides benefit for the survey of
mining regions [123].

The above applications show that point cloud brings a lot
of great ideas in mining areas. However, all these applications
require high-quality point clouds. Registration of point cloud is
the key technology to merge multiple scans to a single larger
scan. The registration accuracy will dominate the quality of
these applications. For example, we cannot obtain high-quality
coal mine volume estimation without accurate registration (See
Figure 12 1). Developing highly accurate and fast point cloud
registration with mining field knowledge will contribute the
mining industry.

C. Autonomous driving

Recently, 3D sensors have widely applied in autonomous
driving, which provides highly accurate 3D environment sens-
ing data. The point cloud is an efficient way to store these
3D data. Since each sensor has view limitation in each scan,
point cloud registration is crucial to provide high-quality 3D
data with a larger view for autonomous driving. The main
contribution of registration includes two aspects: create a
larger 3D scan and provide pose estimation.

1A picture from https://www.maptek.com/products/pointstudio/index.html
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Fig. 12: Coal mine volume estimation.

A High-resolution 3D map provides autonomous driving
eyes, the critical data for navigation, planning, and local-
ization. Construction of such map requires the registration
algorithm [79], [45]. The quality of the registration algorithm
dominates the quality of the high-resolution 3D map. More-
over, point cloud registration between real-time point cloud
of a vehicle and 3D map can apply for real-time vehicle
localization [74], [76]. There is a review of 3D point cloud
processing and learning for autonomous driving [13].

The key requirement of autonomous driving is high ac-
curacy and real-time efficiency if used for localization. De-
veloping high accurate and fast registration algorithms with
prior road information is the research direction in autonomous
driving.

D. Robotics

When the 3d sensor is implanted on a robotic, the point
cloud registration can be used to generate a 3D map to
support firefighters and first responders in search and rescue
missions. Those missions include nuclear incident, chemical
spill and some other dangerous situations. Also, the point
cloud registration with robotics can be used for Power Plant
Inspection [91]. The robotics can also be used to monitor the
shoreline [1]. For example, [38] developed an autonomous
surface vessel with a 3D laser to support freshwater bodies’
environmental monitoring. Recently, the UAV with a laser
sensor can also be used to do the survey [95]. Recently,
[78] proposes a review of point cloud registration in robotics.
Among these applications, point cloud registration is the key
technology. Accuracy and efficiency are the key requirements
for the registration algorithms. Proposing fast and accurate
registration with robotic field knowledge is very urgent and
has high value for robotics fields.

E. Other applications

The point cloud is now an indispensable geological and
geotechnical data for geomechanical analysis [66]. Since
point cloud acquisition is efficient, using the point cloud
technologies such as registration could easily compare the
difference between the point cloud models from a different
time. These difference could be used for safety and stability
monitoring. Since the point cloud has the ability to remotely
(safely), rapidly and accurately extract large quantities of

georeferenced and 3D-oriented data, point cloud technology
provides numerous applications to the geomechanical field,
and the list of uses is continuously growing. Accuracy is the
key requirement. Developing a high accurate registration with
the background knowledge of these fields is the future research
direction.

XII. OPEN QUESTIONS AND FUTURE DIRECTION

Based on the above literature review and application review,
the open questions are two folds: (1) high accurate and ro-
bust registration by overcoming same-source and cross-source
challenges. (2) the fast running speed with the guarantee of
high accuracy. In this section, we suggest four future research
directions.

A. Robust and accurate registration

The point cloud is a record of the 3D environment. However,
the real data is much complicated because of the noise and
outliers variations. These variations could come from sensors
or environment change during the different acquisition time.
Firstly, the future direction could be robust to handle the
challenging variations of noise and outliers in real-world point
clouds. Although many methods are focusing on this area [11],
[104], [9], [41], both the accuracy and speed are far behind
the requirement of real applications. Secondly, high accuracy
is another critical research direction. High accuracy is indis-
pensable for many real applications, such as geography survey,
high definition map for autonomous driving as discussed in
section XI. Although the recent deep learning methods can
achieve high registration accuracy on the KITTI dataset, e.g.
[16] obtains 3cm in the KITTI dataset, the robustness and
generalization ability to other datasets are still less reported.
Thirdly, the generalization ability of learning-based to the real
diverse applications is still a remaining research question.

B. Efficiency

Registration efficiency is another remaining research prob-
lem, which also is a future research direction. The recent point
clouds usually contain millions of points; the conventional
optimization method such as ICP will be extremely slow.
However, many current advanced methods are all required
ICP to do the refinement to obtain high accuracy. Without the
refinement, the accuracy will drop highly. For example, DGR
[16] obtains 3cm registration accuracy with ICP refinement
while the accuracy drops to 22cm without ICP in the KITTI
dataset.

C. Partial overlap

Partial overlap means only part of the point clouds describe
the same 3D environment while the other parts are different.
The partial overlap ratio could be very small such as less than
20%. This overlap ratio will be very challenging since the
search for overlap ratio is a combination problem even though
our human requires much time to manually align two partial
overlapped point clouds to find the common regions. Recent
technologies [100], [36] propose keypoint-based solutions to
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solve partial overlap. They highly rely on the quality of
keypoint detection. The future research direction is to design
a robust algorithm to solve the low overlapped point cloud
registration.

D. Fusion of deep learning and registration mathematical
theories

Many existing experiments [35], [6], [41] show that directly
apply the mathematical theories of registration will cost huge
computation time, while directly apply deep learning will not
guarantee accuracy. Directly combining deep learning and ICP
still require high computation time. Recently, several pieces of
literature [3], [100], [40] are trying to merge the conventional
mathematical theories and deep neural network into an end-
to-end framework in order to obtain both high accuracy
and efficiency. This area is just the beginning, and there
needs much research to develop fantastic fusion registration
algorithms.

XIII. CONCLUSION

This paper conducts a comprehensive survey for point cloud
registration from same-source and cross-source domains. In
this survey, for the first time, we conduct a review of cross-
source point cloud registration and evaluate the existing state-
of-the-art registration methods on the cross-source dataset.
Besides, we summarize the connections between optimization-
based and deep learning methods. After that, we summarize
the possible applications of point cloud registration. Finally,
we propose several future research directions and open ques-
tions in the registration field.
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